The number of common tangents to the circles ${x^2} + {y^2} - 4x - 6y - 12 = 0$ and ${x^2} + {y^2} + 6x + 18y + 26 = 0$ is
$4$
$1$
$2$
$3$
Let the mirror image of a circle $c_{1}: x^{2}+y^{2}-2 x-$ $6 y+\alpha=0$ in line $y=x+1$ be $c_{2}: 5 x^{2}+5 y^{2}+10 g x$ $+10 f y +38=0$. If $r$ is the radius of circle $c _{2}$, then $\alpha+6 r^{2}$ is equal to$.....$
Equation of radical axis of the circles ${x^2} + {y^2} - 3x - 4y + 5 = 0$, $2{x^2} + 2{y^2} - 10x$$ - 12y + 12 = 0$ is
The number of common tangent$(s)$ to the circles $x^2 + y^2 + 2x + 8y - 23 = 0$ and $x^2 + y^2 - 4x - 10y + 19 = 0$ is :
If a circle passes through the point $(1, 2)$ and cuts the circle ${x^2} + {y^2} = 4$ orthogonally, then the equation of the locus of its centre is
Let $C_i \equiv x^2 + y^2 = i^2 (i = 1,2,3)$ are three circles. If there are $4i$ points on circumference of circle $C_i$. If no three of all the points on three circles are collinear then number of triangles which can be formed using these points whose circumcentre does not lie on origin, is-